
Active Reversing

Greg Hoglund
Andrew Schaffer

The goal

Solve reverse engineering problems as
quickly as possible without having to read

disassembled code

Advantages
• Active Reversing reveals contextual

relationships between user actions,
behavior, code, and data

• Active Reversing excels at classification
and sorting problems

• Active Reversing is really easy to use

The business case
• Active Reversing can save time – lots of

time if used correctly
• Active Reversing increases the labor pool

– People without disassembly skills can
participate

• Active Reversing can be used in
conjunction with traditional methods to
increase productivity

The need for data
• Static analysis does not reveal data that is

calculated at runtime nor does it illustrate
motion – all of these things are left to
assumption or prediction

• The need for data is the reason that even
die-hard static reverse-engineers always
drop into a debugger at some point, or
perform real input testing

Here we are
• We present a new methodology that is

very data-flow centric
• Our new method demands a whole new

breed of tools
• We have prototyped several of these new

tools and we illustrate how to use them
• Our company, HBGary, is committed to

commericializing this new form of reverse
engineering

Part II
THE METHODOLOGY

The methodology
Code and data flow is harvested at

runtime, collected into sets, and
blended together into a graph…

...this graph is refined iteratively until it
solves the reverse engineering
problem.

Yes, a graph
• Software is a bunch of small interrelated

moving parts, naturally suited to a graph
• But, to work, the graph must be able to

illustrate the solution data
– Relationship between objects or events,

membership in a particular set, presence of
specific data or content, etc

– Almost anything can be a node, and edges
represent relationships between arbitrary things,
so this is actually quite flexible

The “large graph problem”

• Historically, graphs have been too large to
interact with
– The key word is “interact”

Pretty, but dumb

Ugly, and dumb

Hyperbolic Graphing
• Impressive and powerful, but not for us
• Designed for large directed graphs, but

clumsy when dealing with smaller, more
manageable sets

Stick to tradition
• Smaller, more manageable graphs are best

drawn in the traditional 2D layout with color
and annotations

Data reduction and refinement
• The premise of Active Reversing is to

show only what matters and nothing more
• There is a significant reduction in the

amount of data that must be analyzed
• The refinement of the data converges

upon the solution to the reverse
engineering problem

How: the working canvas

The primary
workspace is
known as the
“working canvas”

Layers
• Sets are layered onto the canvas, much in

the same way that layers in Photoshop™
are combined into an image

Set operations
• Layers are an easy and convenient way to

combine sets
• All set operations (union, intersection, etc)

can be represented using the layer system
… via order, visibility, and blending mode

Set harvesting
• We will cover many tools for set harvesting

– Dataflow tracing
– Hit counting
– Function coverage
– String references
– Symbolic information

The methodology

Harvest, combine, and refine!

Part III
EXECUTION PARTITIONING

Active Reversing reveals
contextual relationships between

user actions, behavior,
code, and data – to begin

we start with code

Assumptions about Behavior
• Program behavior is in response to action

that was just taken
• Different behaviors are represented by

different code
– This is how compilers build software

Examples of User Actions
• Sending a packet
• Causing a specific transaction, such as a

login or copy-file command
• Using a button or menu on the GUI
• Moving a game character in 3-space
• Unplugging or inserting hardware

Execution Partitioning 101

• Rapidly locate the function(s)
responsible for a particular program
feature, isolate code by functionality

– Incremental coverage sets
– Noise removal

Function Coverage

Partitioning

Execution Partitioning 201

• Change up the data content of the
transaction to induce many possible
responses

Remember the data too!
• Its not just about packets and menu items,

but also about the data you type or insert
• The contextual data associated w/ the

user initiated action plays a large part in
how the program logic will respond
– A packet w/ a bad checksum won’t get far
– ‘$%%%%%$$$$$’ in the file-open dialog will

do something different than ‘aZAzazzazAA’

Partitioning more detail
General login processing

Handling of correct

password

Handling of incorrect

password

Handling of too many

invalid attemtps

Example: File Paths
• TBD

Execution Partitioning 301

• Force error conditions, abortive logic,
and exceptions through both data and
direct action

Remember the error state
• Many user-initiated actions can induce

both success and failure logic
• Sending a good password verses sending

a bad password
• Moving before the spell-casting is

complete
• Unplugging the network cable when a file

transfer is in progress

Example: bad login
• Response to bad password will cause

some error handler to execute
• Response to good password will execute a

whole series of connection-initialization
routines

• The code for these two responses are
physically separated in the program code

Part IV
DATA SAMPLING

Active Reversing reveals
contextual relationships between

user actions, behavior,
code, and data – now that we have

code we can move on to data…

Assumption: Data follows code
• It makes sense that code that implements

behavior must also touch data related to
that behavior

• Code and data flows are tightly coupled
• They co-exist spatially in the context of the

stack and the CPU registers

Where we are
• At this point in the process, your graph

should be well partitioned
• Because we know data follows code, we

can begin examining dataflow by going to
the already existing partition of interest

Data sampling

• Collect a detailed instruction-by-
instruction sample history for a defined
region of code

– The collection space is bounded by the
partition set thus granting a manageable
computational overhead

Example: looking for SQL
statements

• Find a region of code that is related to
login

• See if you can recover the SQL
statements

Data sample searching

• Specific value search
– You must know the specific value ahead of time

• Can you query it from the software? (XYZ coordinate?)

• Use regular expressions to perform detailed
pattern scans over the sample set

– Allows much larger sample sets to be analyzed in
much shorter time if you already know what you’re
looking for

Example: searching
• Perform SQL search… TBD

Tool: Data taps

Tool: Statistical analysis on
value series

– Packet types over time

Tool: Conditional triggers

– Trigger a deep trace on a specific data state
and control flow location

– Extends an existing partition, or builds a
new partition by leveraging an existing one
as a ‘jump off point’

Example: Give me Warden!
• Capture all the instructions of the warden

client
– Conditional deep trace on packet type (2E8?)
– Add new functions into new set

• Avoid adding functions from system DLLs

Proximity Relevance

• Cluster functions by relevance to a buffer
or other memory range

– Good for class reconstruction

Locate the allocate and copy
routines in the MIME decoding

class
• I need the allocation and copy routines so

I can locate potential buffer overflows…

Freeform memory scanning

– Scan all of memory for a value
– Use hardware breakpoints to break on

access
• Limited to 4 at a time
• Avoid stack addresses as they are constant flux

– Works well when you don’t have a well
partitioned starting space

Example: Finding the code that
generates the login packets for

WoW…

• I need to find the login function for this
game so I can build an emulation server…
– Rabbit snare the login name
– Dataflow trace
– User-determined execution partitioning

• which functions execute when we log in

Part IV
DATAFLOW TRACING

Dataflow
• Trace every instruction and record how it

effected the data
• Trace all propagation of data
• Record the arithmetic transformation at the

time of propagation
• View the transformation history on any

data instance

Functions use derived values and
copies

• In many cases, functions deal with copies
of the original data, or values that were
derived from the original data, so tracking
just the initial memory range is not enough

• Dataflow tracing reveals many more
functions that deal with the subsequent
data

Tool: Follow a buffer

– Follow a buffer, such as a packet, to track
all derived values and copies of values that
propagate into the program and reveal any
function that touches any of these derived
values

Example: Find the telehack kickme!

• Locate part in WoW that kicks you offline
when you alter XYZ coordinates…

Tracing reveals arithmetic
• When data is moved into a register, it can

be traced against all operands that use
this register

• All instructions that perform comparisons
or calculate results from the data can be
recovered

• All conditional branches based on the data
can be recovered

Tool: Class member type
recovery

– Once offsets into a class instance are
detected as being loaded into a register or
temporary variable, dataflow can be used to
trace out all arithmetic operations on that
data

• Signed / unsigned, char, short, long, float, etc.

Example: reconstruction of player
structure in Lord of the Rings

Online

• TBD

Part V
HITCOUNTS and
SEQUENTIAL
SET REDUCTION

Hitcounts
• Cross reference known quantities of

events with meta-data collected
– Number of accesses
– Number of times executed

Sequential reduction
• Iteratively generate unique results and

filter out nodes that do not accurately track
the sequence
– Removes temporary values
– Removes false positives
– Removes values from high-flux memory

regions, such as the stack

Comparative memory scanning

– Compare multiple sample sets at known
value states

– Iteratively filter non-tracking values

– Increase
– Decrease
– Increase by #
– Decrease by #
– Change to #

Example: Finding XYZ
• I need to find the XYZ coordinates of this

game character so I can test out
telehacking….
– Comparative memory scanning
– Observable Reaction assessment

Hitcount extrapolation

– Compare hitcounts against multiples of a
known quantity of events

• User-induced events

Part VI
DENSITY ANALYSIS

Instruction Density Analysis

– Instruction-type density (e.g. FPU,
arithmetic, MMX, etc..))

– Used to classify functions based on what types of
operations they perform.

Example…
– Isolate the code that handles 3D rendering
– TBD

Example
– Isolate the code that handles cryptography
– TBD

Exit/Throw Density Analysis

– Identifies code that handles parsing or is for
some other reason filled with checks.

Help me build a better fuzzer!
– Useful in fuzzing or other vulnerability

analysis.

Memory Range Density
Analysis

• Accesses to a specific address or address range
– Access density in this case can be used as a metric of

degree of relevance to a given buffer.

Sort the packet parsing functions…
• The main packet parsing function for instance will

access the packet buffer several times, but other
functions might access small pieces of it(like the
packet header, to figure out which parser to send it
to). This way these two different types of functions
can be differentiated easily.

Value Instance Density
Analysis

• Accesses/appearances of a specific value or
value range

» Highlight code relevant to a specific value or set of
values, such as an input string or number.

Branch Density Analysis

– Branch density is a useful metric of the
general complexity of a function.

Find the Big Fat Parser!
– When looking for a large parsing routine,

filtering out smaller less complex functions
would be helpful.

Hitcount Density Analysis

– Execution density (e.g. number of hits on a
given function

Known argument counts

– Filter your set with more specific CXCCC

Operation-specific
memory/value manipulation

– Filter your set with more specific CXCCC

Loopcount Density Analysis

– Filter your set by DDDDD

Part VII
AUTOMATED FLOW
RESOLUTION

Starting with dataflow
• Because we have the ability to collect all

arithmetic that influences branches, we
have the ability build equations that
represent what is required to change those
branching conditions

• We can calculate the required inputs to
change the branch

• TBD

Goodbye fuzzing!
• Input tests no longer need to be random,

they can be derived from calculations
against the dataflow set

• Of course, come calculations cannot be
reversed, such as a hashing function, but
the majority of software branches are a
result of direct value comparisons or
simplistic, reversible arithmetic (such as
parsers)

Part VIII
PHASE SPACE ANALYSIS

Phase Space Analysis
• Determine if program behaves significantly

different than the baseline
• In conjunction w/ fuzzing, input tests, etc

to determine if a new unique behavior has
been uncovered

• Phase-sets are a more advanced form of
set-analysis

EXAMPLE – SQL Injection
• Use SQL metacharacters causing a

distinctively different reaction

Futures

• TBD

Conclusion

• TBD

HBGary
• www.hbgary.com
• hoglund@hbgary.com
• andrew@hbgary.com

http://www.hbgary.com/
mailto:hoglund@hbgary.com
mailto:andrew@hbgary.com

	Active Reversing
	The goal
	Advantages
	The business case
	The need for data
	Here we are
	Slide Number 10
	The methodology
	Yes, a graph
	The “large graph problem”
	Slide Number 14
	Slide Number 15
	Hyperbolic Graphing
	Stick to tradition
	Data reduction and refinement
	How: the working canvas
	Layers
	Set operations
	Set harvesting
	The methodology
	Slide Number 24
	Slide Number 25
	Assumptions about Behavior
	Examples of User Actions
	Execution Partitioning 101
	Function Coverage
	Partitioning
	Execution Partitioning 201
	Remember the data too!
	Partitioning more detail
	Example: File Paths
	Execution Partitioning 301
	Remember the error state
	Example: bad login
	Slide Number 38
	Slide Number 39
	Assumption: Data follows code
	Where we are
	Data sampling
	Example: looking for SQL statements
	Data sample searching
	Example: searching
	Tool: Data taps
	Tool: Statistical analysis on value series
	Tool: Conditional triggers
	Example: Give me Warden!
	Proximity Relevance
	Locate the allocate and copy routines in the MIME decoding class
	Freeform memory scanning
	Example: Finding the code that generates the login packets for WoW…
	Slide Number 54
	Dataflow
	Functions use derived values and copies
	Tool: Follow a buffer
	Example: Find the telehack kickme!
	Tracing reveals arithmetic
	Tool: Class member type recovery
	Example: reconstruction of player structure in Lord of the Rings Online
	Slide Number 62
	Hitcounts
	Sequential reduction
	Comparative memory scanning
	Example: Finding XYZ
	Hitcount extrapolation
	Slide Number 68
	Instruction Density Analysis
	Example…
	Example
	Exit/Throw Density Analysis
	Help me build a better fuzzer!
	Memory Range Density Analysis
	Sort the packet parsing functions…
	Value Instance Density Analysis
	Branch Density Analysis
	Find the Big Fat Parser!
	Hitcount Density Analysis
	Known argument counts
	Operation-specific memory/value manipulation
	Loopcount Density Analysis
	Slide Number 83
	Starting with dataflow
	Slide Number 85
	Goodbye fuzzing!
	Slide Number 87
	Phase Space Analysis
	EXAMPLE – SQL Injection
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	HBGary

